栏目列表
6月学习摘要与心得(吴燕华)
发布时间:2015-06-20   点击:   来源:本站原创   录入者:吴燕华

 294俄罗斯登陆官方教师理论学习摘要与心得

教师姓名  

吴燕华  

职称  

小高  

任教学科  

数学  

学习内容  

小学数学教学中渗透数学思想方法的着眼点  

学习时间  

201506  

摘要心得:  

1、渗透数学思想方法应加强过程性  

渗透数学思想方法,并不是将其从外部注入到数学知识的教学之中。因为数学思想方法是与数学知识的发生发展和解决问题的过程联系在一起的内部之物。教学中不直接点明所应用的数学思想方法,而应该引导学生在数学活动过程中潜移默化地体验蕴含其中的数学思想方法,切忌生搬硬套、和盘托出。例如学生写出几个商是2的除法算式,通过观察可以归纳出被除数、除数和商之间的关系,大胆猜想出商不变的规律:可能是被除数和除数同时乘以或除以同一个数(零除外),商不变;也可能是同时加上或减去同一个数,商不变。到底何种猜想为真?学生带着问题运用不完全归纳举例验证自己的猜想,最终得到了“商不变性质”。所以学生获得“商不变性质”的过程,又是归纳、猜想、验证的体验过程,绝不是从外部加上一个归纳猜想验证。学生一旦感悟到这种思想,就会联想到加减法和乘法是否也存在类似的规律,从而把探究过程延续到课外。  

2、渗透数学思想方法应强调反复性  

小学生对数学思想方法领会和掌握有一个“从具体到抽象,从感性到理性”的认知过程,在反复渗透和应用中才能增进理解。例如学生对极限思想的领会就需要一个较长的反复认识过程。如刚认数时,让学生看到自然数0123……是“数不完”的,初步体验到自然数有“无限多个”;学生举例验证乘法分配律,在举不完的情况下用省略号或字母符号表示;教学梯形面积计算公式之后,让梯形的上底无限逼近于0,得到三角形的面积计算公式……让学生多次经历在有限的时空里去领略“无限”的含义,最终达到对极限思想的理解。同时在具体进行教学时,教师应放慢脚步,使学生在充分地列举、不断地体验中,感悟“无限多、无限逼近”思想。如教学“圆的认识”时,学生画了几条对称轴后,我问这样的对称轴画得完吗?有的说画不完,有的说这么小的圆应该画得完吧。于是我让学生继续画,看到学生画得有些不耐烦了,再让他们观察课件演示“不断画”的画面 ,从而确信了“圆有无数条对称轴”。数学思想方法较数学知识有更大的抽象性和概括性,只有在教学过程中反复、长期地渗透,才能收到较好的效果。  

3、渗透数学思想方法应注重系统性  

数学思想方法的渗透要由浅入深,对数学思想方法的挖掘、理解和应用的程度,教师应作长远的规划。一般地,每一种数学思想方法总是随着数学知识的逐步加深而表现出一定的递进性,因而渗透时要体现出孕育、形成和发展的层次性。例如在组织学习“两位数加两位数”时,要体现出“化归”思想的孕育期:学生计算“3617”一般有“(3010)+(6+7)、361073641336203”等方法,从中看出学生已经有将复杂问题转化为简单问题的意识。在进行两位数乘除法的教学中,要逐步引导学生对此有较清晰的认识;在教学平行四边形面积公式的推导中,应启发学生自觉运用“化归”思想去确立新知学习的方法,平行四边形的面积可以通过分割、平移,转化为长方形的面积。这样,将表面无序的各个渗透点整合成了一个整体。  

4、渗透数学思想方法应适时显性化  

数学思想方法有一个从模糊到清晰、从未成形到成形再到成熟的过程。在教学中,思想方法何时深藏不露,何时显山露水,应审时度势,随机应变。一般而言,在低中年级的新授课中,以探究知识、解决问题为明线,以数学思想方法为暗线。但在知识应用、课堂小结或阶段复习时,根据需要,应对数学思想方法进行归纳和概括。小学高年级学生学习了一些基本的思想方法,可以直呼其名。  

实践表明,以上策略是一个密切联系的有机整体,它们之间相互影响,相互促进。在教学中应抓住契机,适时地挖掘和提炼,促使学生去体验、运用思想方法,建立良好的认知结构和完善的能力结构。  

 

附件
    关闭窗口
    打印文档