9月理论学习摘要与心得(毛宇凯)
发布时间:2014-09-28
点击:
来源:本站原创
录入者:毛宇凯
294俄罗斯登陆官方教师理论学习摘要与心得
教师姓名 |
毛宇凯 |
职称 |
小高 |
任教学科 |
数学 |
学习内容 |
小学数学教学中渗透模型思想的思考 |
学习时间 |
201409 |
||
摘要心得: 所谓“磨”,即“琢 磨”。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的“模”?需要帮助学生建立怎样的“模”?如何来建“模”?在多大的程度上来建“模”?所 建的“模”和建模的过程对于儿童的数学学习具有怎样的影响?……在基于建模思想的数学教学中,这些问题都是一些本原性的问题。一个老师如果从来不曾在这些 方面作过思考的话,可以肯定,他的数学课堂上数学知识概念、命题、问题和方法等很难见到“数学模型”的影子,他的学生也可能从未感受过“数学模型”的力 量。
众所周知,“鸡兔同笼” 问题的数学模型是二元一次整数方程,然而,在小学里学生并不学习二元一次整数方程。可是,“鸡兔同笼”却被广泛地运用到小学教材中:北师大版五年级上册 “尝试与猜测”中用它来让学生学会表格列举;苏教版六年级上册将之作为一道练习题来巩固“假设和替换”的策略;而人教版则是浓墨重彩,在六年级上册“数学 广角”中详细介绍了“鸡兔同笼”问题的出处、多种解法及实际应用。教学这些内容时,如果仅是就题讲题,就课本讲课本,难免显得过于简单和浅薄。那么,对小 学生的数学学习而言,“鸡兔同笼”是否还隐藏着其他的“模型”因素呢?我想至少有三方面是值得关注的:一是内容层面的,即“鸡兔同笼”这类题本身的题型结 构特征(告知两个未知量的和以及两个未知量之间一定的量值关系,求未知量);二是方法层面的,即“假设法”的一般解题思路(画图、列举、替换等在某种意义 上都是“假设”);三是思想层面的,即从一个具体的“鸡兔同笼”数学问题出发,在经历了对其解答的过程之后,能将解决它的方法和思路进行扩展运用(学习 “鸡兔同笼”,最终的目标并不仅仅是会解答一道“鸡兔同笼”,更有其他)。有了这样的理解,在教学中,我们就会引导学生在关注教材中所编排内容的同时,注 意把握题目的类型、结构和类比运用,用系统的眼光来看待它的教学价值。这些,恰恰是学生到了中学后真正建立二元一次整数方程数学模型的基础。
再比如,“确定位置”的数学模型是立体坐标系。学生在一年级接触到的一列队伍中“老爷爷排在第3个”,其实就是一维空间上的确定位置;在二年级接触到的“小明坐在第3排第4个”,其实就是二维空间上的确定位置;五年级学习的“数对”则是初步抽象的二维坐标模型。如果在教学中能将这一层意义渗透进去,一定能为学生将来学习立体坐标系提供很好的支持。
眼界决定境界。一个老师是否具有“模型”眼光和“模型”意识,往往会决定着他的教学深刻性和数学课堂的品质。
|
附件:
关闭窗口
打印文档
|