9月理论学习摘要与心得(吴燕华)
发布时间:2014-09-28
点击:
来源:本站原创
录入者:吴燕华
教师姓名
|
吴燕华
|
职称
|
小高
|
任教学科
|
数学
|
学习内容
|
小学数学教学中渗透模型思想的思考
|
学习时间
|
20140922
|
||
摘要心得:
关于“数学建模”(Mathematical Modelling),有着较为确定的含义,即“把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。数学知识的这一运用过程也就是数学建模。”[i][i][①]而“为了一定的目的对现实原型作抽象、简化后,采用形式化的数学符号和语言所表述出来的数学结构”也就是“数学模型”(Mathematic Model),它是数学符号、数学式子以及数量关系对现实原型简化的本质的描述。”
数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。这种“深入”,就小学数学教学而言,具有鲜明的阶段性、初始性特点,它更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”
用数学建模的思想来指导着小学数学教学,不同的年级、内容、学习对象应该体现出一定的差异,但也存在着很大的关联性。就教学实施的一般程序来看,可以归结到三个字:“磨”“模”“魔”。
一、“磨”。
所谓“磨”,即“琢磨”。也就是教师首先要反复琢磨每一具体的教学内容中隐藏着怎样的“模”?需要帮助学生建立怎样的“模”?如何来建“模”?在多大的程度上来建“模”?所建的“模”和建模的过程对于儿童的数学学习具有怎样的影响?……在基于建模思想的数学教学中,这些问题都是一些本原性的问题。一个老师如果从来不曾在这些方面作过思考的话,可以肯定,他的数学课堂上数学知识概念、命题、问题和方法等很难见到“数学模型”的影子,他的学生也可能从未感受过“数学模型”的力量。
二、“模”。
所谓“模”,即“建模”。也就是在教学中要帮助学生不断经历将现实问题抽象成数学模型并进行解释和运用。对小学数学而言,“建模”的过程,实际上就是“数学化”的过程,是学生在数学学习中获得某种带有“模型”意义的数学结构的过程。
三、“魔”。
所谓“魔”,即“着魔”,也就是学生对“模型”在数学学习中的运用有着深切的体验和感悟,并对之产生好奇,从而在数学学习中能主动地构想模型、建立模型、运用模型。儿童数学教学的终极目标,应该是让学生都懂数学、爱数学,对数学怀有敬畏之心和热爱之情。要实现这样的目标,数学教学就不能只停留在知识和方法层面,而是要深入到数学的“腹地”,用数学自身的魅力来吸引学生。正如日本数学家米山国藏所说:“作为知识的数学出校门不到两年就忘了,唯有深深铭记在头脑中的数学的精神、数学的思想、研究的方法和着眼点等,这些随时随地地发生作用,使人终身受益”。
总的说来,在数学课堂上,我们教的是数学,面对的是儿童。“磨”,侧重于教师对数学本身的理解;“魔”,则是要坚持儿童立场,读懂儿童,引领儿童,发展儿童;“模”指向教学过程,是在数学和儿童之间真正搭起一座有意义的数学学习之桥。三者有机统一,互动交融,缔造出小学数学建模教学的至高境界。
|
附件:
关闭窗口
打印文档
|